The role of insulin, leptin, adiponectin in forming of structural and functional changes of myocardium in obesity and their dynamics in weight loss.


The aim of this work was a review of literature data on the possible relationships between the levels of insulin, leptin, and adiponectin
and the formation of structural and functional changes in the myocardium in obesity, as well as their dynamics due to body weight reduction.
We analyzed the studies found by keywords «insulin, adiponectin, leptin, left ventricular hypertrophy» in international databases
Pubmed, Medline and Cochrane. Results of many studies suggest a positive association with hyperinsulinemia and hyperleptinemia mass
index and left ventricular mass. Insulin resistance can act as an independent predictor of subclinical diastolic dysfunction. Contribution
of adiponectin in the development of cardiovascular diseases has been investigated extensively: many authors have obtained results that
indicate its protective effect on the myocardium. Weight reduction is associated with decrease in levels of blood insulin and leptin, but
leptin reduction, according to some authors, there was only seen in a decrease in body weight by an amount exceeding 7% of the original.
The results of measuring the level of adiponectin in obese patients on the background of weight loss remains controversial: some authors
have obtained an increase in the concentration of this protein in the blood, while others pointed out the lack of any dynamics.

About the authors

Anna Viktorovna Postoeva

Northern State Medical University

Author for correspondence.

Russian Federation Assistant at the Department of Therapy, endocrinology and ambulance services

Irina Vladimirovna Dvoryashinva

Northern State Medical University


Russian Federation

Professor, MD, PhD, Head of the Department of Therapy, endocrinology and ambulance services


  1. World Health Organization
  2. Messerli FH. Overweight and sudden death. Increased ventricular ectopy in cardiopathy of obesity. Archives of Internal Medicine. 1987;147(10):1725–8. PMID:2444173 doi: 10.1001/archinte.147.10.1725
  3. Iacobellis G, Ribaudo MC, Leto G, Zappaterreno A, Vecci E, Di Mario U, et al. Influence of Excess Fat on Cardiac Morphology and Function: Study in Uncomplicated Obesity. Obesity Research. 2002;10(8):767–73. doi: 10.1038/oby.2002.104
  4. Philip-Couderc P. Uncomplicated human obesity is associated with a specific cardiac transcriptome: involvement of the Wnt pathway. The FASEB Journal. 2004. doi: 10.1096/fj.03-1242fje
  5. Lugo M, Putong PB. Metaplasia. An overview. Arch Pathol Lab Med. 1984;108(3):185–9. PMID:6546503
  6. Unger RH. Lipotoxic Diseases. Annual Review of Medicine. 2002;53(1):319–36. PMID:11818477 doi: 10.1146/
  7. Unger RH, Scherer PE. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends in Endocrinology & Metabolism. 2010;21(6):345–52. doi: 10.1016/j.tem.2010.01.009
  8. Sasson Z, Rasooly Y, Bhesania T, Rasooly I. Insulin resistance is an important determinant of left ventricular mass in the obese. Circulation. 1993;88(4):1431–6. doi: 10.1161/01.CIR.88.4.1431
  9. Urbina EM, Gidding SS, Bao W, Elkasabany A, Berenson GS. Association of fasting blood sugar level, insulin level, and obesity with left ventricular mass in healthy children and adolescents: The Bogalusa Heart Study. American Heart Journal. 1999;138(1):122–7. doi: 10.1016/S0002-8703(99)70256-5
  10. Sharp SD, Williams RR. Fasting Insulin and Left Ventricular Mass in Hypertensives and Normotensive Controls. Cardiology. 1992;81(4–5):207–12. doi: 10.1159/000175806
  11. Verdecchia P, Reboldi G, Schillaci G, Borgioni C, Ciucci A, Telera MP, et al. Circulating Insulin and Insulin Growth Factor-1 Are Independent Determinants of Left Ventricular Mass and Geometry in Essential Hypertension. Circulation. 1999;100(17):1802–7. doi: 10.1161/01.CIR.100.17.1802
  12. Ilercil A, Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, et al. Associations of Insulin Levels With Left Ventricular Structure and Function in American Indians : The Strong Heart Study. Diabetes. 2002;51(5):1543–7. doi: 10.2337/diabetes.51.5.1543
  13. Galvan AQ, Galetta F, Natali A, Muscelli E, Sironi AM, Cini G, et al. Insulin Resistance and Hyperinsulinemia : No Independent Relation to Left Ventricular Mass in Humans. Circulation. 2000;102(18):2233–8. doi: 10.1161/01.CIR.102.18.2233
  14. Malmqvist K, Isaksson H, Östergren J, Kahan T. Left ventricular mass is not related to insulin sensitivity in never-treated primary hypertension. Journal of Hypertension. 2001;19(2):311–7. doi: 10.1097/00004872-200102000-00019
  15. Rider OJ, Francis JM, Ali MK, Byrne J, Clarke K, Neubauer S, et al. Determinants of left ventricular mass in obesity; a cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance. 2009;11(1):9. doi: 10.1186/1532-429X-11-9
  16. Muscerlli E, Camastra S, Kozakova M et al. Insulin resistance is an independent predictor of early diastolic myocardial dysfunction in uncomplicated obesity. International journal of obesity, abstracts supplement, 2008; S133.
  17. Cittadini A, Stromer H, Katz SE, Clark R, Moses AC, Morgan JP, et al. Differential Cardiac Effects of Growth Hormone and Insulin-like Growth Factor1 in the Rat: A Combined In Vivo and In Vitro Evaluation. Circulation. 1996;93(4):800–9. doi: 10.1161/01.CIR.93.4.800
  18. Epstein FH, Reaven GM, Lithell H, Landsberg L. Hypertension and Associated Metabolic Abnormalities — The Role of Insulin Resistance and the Sympathoadrenal System. New England Journal of Medicine. 1996;334(6):374–82. doi: 10.1056/NEJM199602083340607
  19. Pladevall M, Williams K, Guyer H, Sadurní J, Falces C, Ribes A, et al. The association between leptin and left ventricular hypertrophy. Journal of Hypertension. 2003;21(8):1467–73. doi: 10.1097/00004872-200308000-00009
  20. Perego L, Pizzocri P, Corradi D, Maisano F, Paganelli M, Fiorina P, et al. Circulating Leptin Correlates with Left Ventricular Mass in Morbid (Grade III) Obesity before and after Weight Loss Induced by Bariatric Surgery: A Potential Role for Leptin in Mediating Human Left Ventricular Hypertrophy. The Journal of Clinical Endocrinology & Metabolism. 2005;90(7):4087–93. doi: 10.1210/jc.2004-1963
  21. Barouch LA. Disruption of Leptin Signaling Contributes to Cardiac Hypertrophy Independently of Body Weight in Mice. Circulation. 2003;108(6):754–9. doi: 10.1161/01.CIR.0000083716.82622.FD
  22. Raju SVY, Zheng M, Schuleri KH, Phan AC, Bedja D, Saraiva RM, et al. Activation of the cardiac ciliary neurotrophic factor receptor reverses left ventricular hypertrophy in leptin-deficient and leptin-resistant obesity. Proceedings of the National Academy of Sciences. 2006;103(11):4222–7. doi: 10.1073/pnas.0510460103
  23. Schwartz MW, Woods SC, Porte DJr et al. Central nervous system control of food intake. Nature. 2000;404:661–671.
  24. Haynes WG, Sivitz WI, Morgan DA, Walsh SA, Mark AL. Sympathetic and Cardiorenal Actions of Leptin. Hypertension. 1997;30(3):619–23. doi: 10.1161/01.HYP.30.3.619
  25. Rajapurohitam V. The Obesity-Associated Peptide Leptin Induces Hypertrophy in Neonatal Rat Ventricular Myocytes. Circulation Research. 2003;93(4):277–9. doi: 10.1161/01.RES.0000089255.37804.72
  26. Xu FP. Leptin Induces Hypertrophy via Endothelin-1-Reactive Oxygen Species Pathway in Cultured Neonatal Rat Cardiomyocytes. Circulation. 2004;110(10):1269–75. doi: 10.1161/01.CIR.0000140766.52771.6D
  27. Tajmir P, Ceddia RB, Li R-K, Coe IR, Sweeney G. Leptin Increases Cardiomyocyte Hyperplasia via Extracellular Signal-Regulated Kinase- and Phosphatidylinositol 3-Kinase-Dependent Signaling Pathways. Endocrinology. 2004;145(4):1550–5. doi: 10.1210/en.2003-1128
  28. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2–dependent mechanisms. Nature Medicine. 2005;11(10):1096–103. doi: 10.1038/nm1295
  29. Iacobellis G, Sharma AM. Obesity and the heart: redefinition of the relationship. Obesity Reviews. 2007;8(1):35–9. doi: 10.1111/j.1467-789X.2006.00257.x
  30. Tsatsanis C, Zacharioudaki V, Androulidaki A et al. Adiponectin and pro-inflammatory stimuli. International journal of obesity, abstracts supplement. 2008. S121.
  31. Geldszus R, Mayr B, Horn R, Geisthovel F, von zur Muhlen A, Brabant G. Serum leptin and weight reduction in female obesity. European Journal of Endocrinology. 1996;135(6):659–62. doi: 10.1530/eje.0.1350659
  32. Havel PJ, Kasim-Karakas S, Mueller W, Johnson PR, Gingerich RL, Stern JS. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. The Journal of Clinical Endocrinology & Metabolism. 1996;81(12):4406–13. doi: 10.1210/jcem.81.12.8954050
  33. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Long-Term Persistence of Hormonal Adaptations to Weight Loss. New England Journal of Medicine. 2011;365(17):1597–604. doi: 10.1056/NEJMoa1105816
  34. Nasseri E, Hosseini M, Dorosti MA et al. Impact of weight loss on inflammatory proteins in obese women. International journal of obesity, abstracts supplement. 2008. S108.
  35. Leichman JG, Aguilar D, King TM, Mehta S, Majka C, Scarborough T, et al. Improvements in systemic metabolism, anthropometrics, and left ventricular geometry 3 months after bariatric surgery. Surgery for Obesity and Related Diseases. 2006;2(6):592–9. doi: 10.1016/j.soard.2006.09.005

Supplementary files

There are no supplementary files to display.



Abstract - 1410

PDF (Russian) - 880



Copyright (c) 2015 Постоева А.В., Дворяшина И.В.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies